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Dynamic problems of elasticity theory are considered for a strip, a half-strip,
and a rectangle partially reinforced by constant-stiffness beams., Questions
of wave propagation, energy transfer, stress concentration under the beam
ends are studied, The possibility of extending the solutions obtained to other
classes of mixed problems is discussed.

The solution of the inhomogeneous problem of stationary vibrations of a
semi-infinite beam on a strip, and the system of piecewise-homogeneous solu-
tions of this problem are constructed in quadratures, Analogous problems for
a half-strip and rectangle, particularly periodic problems and the problem of
the dynamics of one finite beam on a strip, are reduced to normal Poincare—
Koch systems whose matrix elements decrease exponentially in the numbers
of rows and columns, by the use of new generalized orthogonality relationships
with a load,

The method of piecewise~homogeneous solutions was used earlier only in
elastostatic problems {1 — 9], the problems under consideration were also not
solved by other methods.

1. Let a semi-infinite beam z > 0, y = 1 with constant stiffness D and
linear mass p lie onanelasticstip —oo <<z << oo, 0Ly <(1. There
is no friction between the beam and the strip, and the foundation of the strip is in a
sliding frame, Stationary normal loads on the free part of the strip and beam, aswell
as the moment and transverse force at the point = = 0, y = 1 act in phase,and
equal to f; (z) cos Wi, f, (x) cos i, P, cos wi, Py cos wi, respectively, where

t is the time, and o is the frequency of the forced vibrations, The loads f, (),
fa (%)  are local or decrease exponentially as |z | — oo, at ¢t =0 the
moment P, is clockwise, and the force P is along the ¥ axis, The conditions
at infinity correspond to the Mandelshtam principle; the energy flux averaged with
respect to the strip section and the period T = 2me™! for each wave being propag-
ated is directed towards - oo as & — == oo (10}, The local strain energy of
the strip is constrained in the neighborhood of the point z =0, y = 1.

We seek the solution of the boundary value problem for the strip u,.= Re [u (=,

y) €91 inthe Papkovich — Neuber form [11)
2Gu =4{(1 —v)® —grad F, ® = (0, D), ®, =0 (1. 1)
F=0,+z® + yb, AD, + kD, =(k? — 5Dy @,
AD, + k20, =0, k2 =1Fk?(1—2v) (2 —2v)Y, k=
pwiG™
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where p is the density of the strip material, v and G are its elastic constants, Let
Wy and U, be projections of the vector w on the x .and y axes, and Us, U, Uy
the stress tensor components Ty, Oy, o, , respectively,
Let us write down the boundary conditions for the complex amplitudes of the dis-
placements and stresses
Uy (2, 0) = uy (x, 0) = uy (z,1) =0 (L2
ug (x, 1) = f, () (<< 0), n (x) = Do*u,/ 62* — au, + (.3
us=f(x) (>0,y=1)
Ym (0) = Py (m=2,3), Vm(@)=Ddu,/ 02", y=1 (L9
(D=EpH2@1 — v, a= pho?)

Here E, and v, are elastic constants, and h is the beam thickness,
Applying a bilateral Laplace transform to equations (1, 1), we obtain from the con-
ditions (1,2)

na(@ 1) = oo {COUs(p, )edp, s=1,2....,5 (1.5)
L

2GU, (p, y) = pq (¢® sin g, €08 g1y — 19z Sin gy COS QoY)

26U, (p, y) = q:192 (¢® sin ¢, 8in g,y — p? sin ¢, sin goy)

¢ = p* + Yok’ qm® =P+ kn', m=1,2

Substituting (1. 8) into (1, 3), we obtain two equations

o+ (p) + o (p) = C (P)N1 (p)y m* (p) + 0" (p) = C (P)N; (p), (1.6)

pEL

te oo
ot (p) = & § (o, ez, wE(p) =& {n(@emda
° o

Ny(p) = Uy (p, 1) = ¢*qy 8in gz co8 q; — P*qiq2® sin gy cos g,
N.(p) = Ny (p) + (Dp* — a)U: (p, 1), 26U, (p, 1) =
k?q1q, Sin gy Sin g,

Here N, (p) (r = 1, 2) are even entire functions having a countable set of
zeroes g, After expanding the integrals (1,5) in a residue series (at the complex
poles p == g, each residue is a wave damped along z, the homogeneous solution),
the pure imaginary poles whose number S, is finite and dependent on @, deter-
mine the waves being propagated, As the frequency w increases, the majority of
these zeroes arrive at the imaginary axis through the origin from the complex plane.
The cases a,, == 0 can hold only for critical values of the frequencies @ which
agree with the natural vibrations frequencies of the strip cross-section, Hence, the
number of imaginary zeroes S, (@) for a given frequency © is determined by the
number of critical frequencies not exceeding @ , i.e.,

o= [2] 4[] 1 =

ey

where [al is the integer part of the number a, and ¢; and Co are the
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propagation velocities of the tension and distortion waves referred to the dimensional
width of the strip, In principle, this relationship can be spoiled in individual frequ-
ency bands because of the zeroes arriving at the imaginary axis not through the origin,
However, such cases are the exception [12] and change the quantity S, insignificant-
ly, For certain values of  the functions N, (p) have multiple zerces, and these
cases are not examined here, We shall number the pure imaginary zeroes @, ,which
differ in aboslute value, from one to S, > 0, while the numbering of the complex
(and real) zeroes @p, in the half-plane Re p >0 starts with S, 4 1; the zeroes
symmetric to those mentioned with respect to the origin will be denoted by a_p,,
G-y, = —ay,. Relying on the Rouchét theorem and following [13], it can be prov-
edthatall [a,, | > @ greater then zero in absolute value are complex. For
Re p> 0, Im p > 0, they are defined by the asymptotic formulas

ay = (Yok — L)a — Yo + Yol In kn + 0 (1) (L7
ape = (Yok — L)n + i0 (1)

where &, >0 are integers dependent on @, & to even, The larger zeroes ag;
have odd numbers in the quadrant Rep > 0, Imp << 0.

We select the contour L and the pure imaginary zeroes with positive indices %
so that the Mandel'shtam principle would be satisfied and the numbering of the zeroes
in the last expressions would be natural, from oneto S,. Let p = iy be a point
of the imaginary axis, ¢, = dw / dy for iy = a,, the group velocity of the kr -
th wave being propagated from the left (r = 1) or the right {r = 2) to infinity,

Qur the energy density of this wave averaged over the period T , Py, its flux
averaged over T and over the section = = const. Letus use the Reynolds —
Rayleigh formula P,, = Q% (see [14], p. 239; M. A, Leontovich {15] and
Lighthill [16] obtained the most general proof of the validity of this formula), Since
N, (—p) = N.(p), then c_p, = —cp,, andsince Qp > 0, the flux Py, << 0
corresponds to one out of every two eigenvalues with modulus equal to | a5, |} we
denote this number (and point) by @y,, £ > 1. Let the contour L agree with the
imaginary axis, by bypassing the point a,, from the left, and the point €_p, from
the right, k > 1. Then after expanding the integrals (1, 5) in residue series at the
poles p = a,,, we have in accordance with the Mandel'shtam principle Py, <C 0
for k=1,2,...,8; and Py, >0 for —k=1,2,..., 8,

Elimination of the function C (p) from (1, 6) results in a Wiener — Hopf equation

e+t @E =K@l (p)tor (- pEL, K@= (1§
Ny (P)N: (p)
Let us construct the canonical solution of the homogeneous equation 17)g (p) =
K (p)o,* (p), p & L. Letus apply the usual method[17, 8]of extracting  the
Riemann problem 1,” (p) = K, (p)o,* (p) With zero subscript on the imaginary
axis from (1. 8) by using trigonometric functions, Let us set

do* (p) = 0" (p)oz* (p), sK (p) = Ki(p)K2(p) (1.9)

Ky(p) = 7,2— p>etginp kﬂl ctg 1 (p — ary) otg 7 (p + @) X
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S,
[ Il ctgn(p —ans) ctg m(p + akz)]—l

k=1
and let us use the formula
zetgnz =T (1 — 2T (1 + 2T (Y — 27 X (Y3 + 2).

Factoring the function K, (p) by elementary means in conformity with the
Mandel shtam principle, we obtain

S1
+ N T3 (Yy + p) (p+ akl) Fs+p— akl) Mg+ p+ akl)
o' (P)="wa1p El TATr—a )T AT 5+ % (1.10)
ﬁ T (14 p—a)l (4 P+ ay)
_— (P+a )T (Ve +p—ay) ' M2+ P+ o)

According to (1.6) and (1,9), the function K, (p) satisfies the Hdlder condition
on the imaginary axis, K, (iy) = 1 + 4GD™* |y | > + O (¢7%) for |y | — oo,
We therefore have [18]

1 e In Kq (t) dt 1,11
o2 (p) = epx{ 2 S t—’p } ¢ )

—ioo

The general solution of the inhomogeneous equation (1. 8) is constructed taking
into account the requirement of finiteness of the local energy under the beam edges,
which is equivalent to the condition uy (z, 1) ~ Az®, ¢ > —1, z — +0, or
((19), p.48) 0t (p) ~ Al (¢ +1) p®* for p— oo . Since o,* (p) =

O (1) and a,* (p) =0 (p™™) for p—> oo according to (1,10) and (1.11),
then ¢ = —1/, , and therefore [18]

sy _ G0 (P) sT(t) n* (#) dt 1.12
() =" ,S[c.,w) K(t)co"(t)] i—p (42

00" (p)I(p), H(p)=Ap+ B

where A and B are constants, However, (1,12) is hardly effective precisely be~
cause of the difficulties in calculating 4, B for @ =z= (0 , and will not be used
here,

Let us construct the solution in another form [2] which is well adapted for computa-
tions on the vibrational load of the foundation (strip) and the support beam slabs of a
skeleton structure having a point contact with the slabs [20]. If f, (z) = f,e®* (r =
1, 2), then we obtain by an elementary method, the Liouville theorem [19]

o+ (p) + o (p) = 6o* (p){f1 [00* (@)@ — P)I* + f; [no (a)(p — (1.13)
a)l™* -+ 1I (p)}

Let f, () = 0, f, () = Q20 (x — ¢) in the problem (1. 2), (1.3), where
8 (z) is the Dirac delta function, We seek its solution 1,5, i.e., the Green's
function, in the form of the sum of solutions of the fundamental problem, as in {2]:
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Uy (2,0) = 4, (7, 0) = Uy (1), (@) =Qb(z—¢)  (L1g
evidently being expressed by the formulas (1.5), where
C (p) = Que™N," (p) (1.15)
and the solutions of the mixed (correcting) problem (1.2), (1.3), where

frl@) = 2 Que™* ™ N, (ara) [Ny (aro)I  fa(z)=0 (1.16)
k=1
The form of the function f, (x) permits using (1.13) in thesolution of the prob-
lem (1, 2), (1,3), (1.16)., Consequently, taking account of (1.5) and (1.15) we obtain

ub (2, y) = ZQ—,:,IS {xé'(;)‘ + m[; t(Gng, p)-+11 (p)]}U.(p, yyerdp (117

_ By (v) _ M
AR A ey R s )

The Green's function of the problem of an overload is calculated analogously when
@) =0b(z —¢), ¢ <0, f(x) =0, P, = Py =0 in(L2)— (L4,

The stress intensity factor under the beam edges is found by means of known asym-
ptotic estimates [10] and has the form

ud (z, 1) = 4 ()"t + 0 (V2), z— +0
We write the expansion of the integrals (1, 17) in a residue series to satisfy condi-

tions (1.4) and the conditions at the endfaces of a rectangle

A’l<x<}"2v O\< y<11 A'l<0, A'2>c *
orahalf-strip A; = —oo and A, = 00 (see Sect.3). Closing L on the
right (j = 1) andthe left (j = 2) by semicircles of radius R, =n |k |,
and taking account of the equality E, (p) = E, (p) = N, (p)ne @)1, pE L,
we obtain

ud (As, ¥) = (— 1YQ2 D} £5(— bij) Us(— bijy 1) €W, by; = (— 1) ags

k=1
() = (i — Dy + E* @ Y, (e, ©) + 47+ B]

n=1
(E;* (p) = res [E; (p)I7)
Let us evaluate the quantities Y, (0), Pg (0) by term-by-term differentiation
of the series (1,18) for j = s= 2,y =1, M <<c.
Using the identity

DU, (ape, 1) = Ny (@p2)dns™, dye = aD™ — ape

(1.18)

(1.19)

we obtain a system of two equations in the complex unknowns A and B from con-
dition (L.4), (m = 2, 3)
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o Ny(ay,) “k‘zm . N

2 m{no (ax2) ,:n;lt(an% ar2) + Aayz+ B] —  (1.20)
(_____,1)m — Pm
e ket } T Q

Because of the estimates (1,7), the k -th terms of these series decrease not slow-
erthan |k |7/» for m = 2 and |k |~* for m = 3, and according to (1.17),
the inner series converge exponentially in n.

Let us examine questions referring to the uniqueness of solutions in the form
(1.12) or (1, 17), In investigating the uniqueness, i.e,, in computing the degree of
the polynomial H (p), the representation (1, 10), (1. 11) imposed no constraints on
either the residues of the function (K (p)i+! at the poles p = ay,, k¥ < S,, or on
the mutual location of the points e, and ap, on the imaginary axis, Each kr-th
factor in the product (1, 10) tends to one for | Imp | — oo, Rep > 0 . Hence, if any
set of points {ag;, ans} ({@-p1, a—5s}) is bypassed on the right (left) say, for & < .5,

n < S, , despite the Mandel'shtam principle, and the rest of the poles and zeroes on
the imaginary axis on the left (right) afterwards, then the conditions of the general-
ized Liouville theorem governing the uniqueness and nonuniqueness do not change,
as before ¢*,(p) ~ p~/* as p— oo. In particular, it hence follows that the Som-
merfield principle also generates a unique solution in the form (1. 12), (1.17), and if
there are backward waves among those being propagated (bringing energy from in-
finity), then the magnitudes of the corresponding sources are not arbitrary at infinity
but are determined in a unique manner by the functions fr (z) and the quantities P..

It is meanwhile necessary to note that the contour L does not certainly define
the unique solution as holds in elastostatic boundary value problems. By replacement
of the contour integrals by residue series at the poles ayy, ays, the representation(1, 10),
(1. 11) permits easily to establish for what selection of the contour L a nonunique
solution can be obtained, how many arbitrary constants are and what the corresponding
pattern of the wave process, For example, if the countour L selected according to
the Mandel'shtam principle is displaced so that it would bypass any symmetric points

p=ap and p= —ay, k=1,2,..., 5,85 <, ontheright, and its previous
location is retained at the rest, then § factors p — ap, are added in the denomina-
tor of (1.10) (the set of gamma functions in (1. 10) is not associated with the bypassing
of the zeroes and poles on the imaginary axis, hence it is always single-valued), It
hence follows that o,*(p) ~ p‘“'/"s as p — oo ,and this means that according to the
generalized Liouville theorem & -+2 arbitrary constants will enter into the solution
They can be determined by giving the amplitudes of S standing waves of the form
up(y) cos (agg | ) X cos we, which occur, according to (1.12) for £ — oo after the
mentioned shifting of the contour, Such an analysis is easily performed for an arbitr-
ary bypassing of the points ay, on the imaginary axis,

2. Let us construct a system of piecewise-homogeneous solutions (PHS) of the
dynamic problem (1.2) — (1.4), The general form of its Ar-th elements u ke (Z,
y), combined in two different subsystems (r = 1, 2), will be the same as in
statics, Following [2], we obtain
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, Cy, E,_, (b,
D Y 4 PR
i - r
Uy (P, ¥)dp
E,(p)e P

k:1,2, ..y HhrzAkrp+Bhr1

where A,,, By,, Cur are arbitrary complex numbers. Analogously to the expans-
ion (1.19), we have (§,; is the Kronecker delta)

Ufe (v ) = Cir 18,37 (B 1) 57 — (— 1Y 3} % @9
Nn=1
T (— bas y) €7 ]
Tl = (1) (ar + bu) Eser (bar) + Anrbny —
Bkr]E*j(“bni)

The constants A,,, By, are calculated from the conditions ™ wuy," (z, ¥) /

g™ = 0, z=0,y=1, which yield a system of two equations for each
Ahn B kr _
(r— 1) DUs(are, 1) aka + 2 Tindrnagnz N1 (ana) = O (2.3)
N=——1

m=2,3r=12 k=12, ...

after term-by-term differentiation of the series (2.2) for s == j = 2 and passage to
the limitas z = 0.

The series converge in n, as do the external series (1. 20),

The stresses ganerated by the kr - th PHS under the beam edges have the form

ukﬁr (z, 1) = Ay, (Rx)""’ + 0 (V-:;)i z— +0

Following [10], it can be shown that the functions Us (ax,, y) the homogeneous
solutions into which the elements of the PHS system are expanded in (2,2) for z =
const , will satisfy the general orthogonality relationship with the load

1
j [Ul(akr’ y) U4 (anr! y) - U3 (akr’ 7!) U2 (a‘nm y)] dy + (2" 4)
O
2 (r - 1) Dakr (air + a";r) Uﬂ (akrv 1) U‘Z (am-v 1) = 6k'nTkr

This relationship also holds upon replacing @y, by bp,; it has been obtained
in[10] for =+ =1 .

Diverse contact problems about the forced stationary vibrations of an arbitrary
number of finite beams coupled to an elastic strip, half-strip, and rectangle, can be
solved by using the PHS system (2. 1). As analytic estimates and the results of comput-
ing the static strains of beams and stringers in combination with an elastic base [2— 9,
20], the solution hence tums out to be effective even in those cases when the strips
or rectangles are comprised of homogeneous reinforced rectangles and half-strips with
different elastic characteristics, i, e., when the base has a vertically laminar structure
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and the stiffness of the reinforcing elements are piecewise~continuous, To solve vis-
coelasticity problems it is sufficient toset S, = 0 in (1. 10) and to replace the real
moduli of G and E, by complex moduli,

The PHS method is easily transferred to problems of plate bending vibrations, to
mixed problems of stationary vibrations of cylindrical bodies [1,3, 4, 7], to kindred
problems of acoustic and electromagnetic wave diffraction, This method is not ap-
plicable to dynamic boundary value problems for wedgeshaped and conical domains,

Setting D = oo, and using (2, 1) there is possible reduce to normal systems of
Poincaré — Koch, the problems of the vibrations of stamps, as well as their dual prob-
lems of arbitrary slits in a half-strip and rectangle, particularly, periodic and doubly-
periodic problems on the stationary vibrations of an inhomogeneous strip, half-strip,
and place weakened by longitudinal and transverse slits.

3. Letus turn to examples, Consider two problems a) and b) for the rectangle
M <Ay, 0y<<1. Let there be "cross” conditions on its endfaces

us (hjy ¥) = gsj (), Ym (Ag) = Frn, j=1,2 (3.1)

in which a) s= 1.3, m = 1.3} b) s = 2.4, m = 0.2. The conditions (1. 2) — (1.4)
are conserved on the longitudinal sise, where f,(z) =0, f3(z) = Q0 (z —¢); all
the loads are cophasal,

We seek the solution of both problems in series of PHS

2 oo
ug(z,y) =ud(z,p) + B N k2, ) (3.2)
r=1 k=1

satisfying conditions (1.2) — (1.4) at once. To satisfy conditions (3. 1), we substitute

the series (3. 2) in their left sides and then the expansions (1. 18) and (2.2). We change

the order of summation with respect to & and n in the double series being formed.

We multiply both sides of conditions (3,1) successively a) by Us(bnj,¥), —Ua(bnjs
¥), 2b,5°U5 (bpo, 1), 2Us(bpg, 1), and b) by Uj (b5, %), —Uslbnj, ¥), 2b,5U; (bpay 1),
28,,%U, (bpg, 1).  We add the four equalities manipulated in such a way and we in-

tegrate with respect to y between zero and one, Introducing the new unknown Xy, =

C',‘,eb'"xr, we obtain a normal Poincaré — Koch system from the total equation [23]

because of the evenness of the relationship Us(—bgy, y) = (—1)*U; (by,, y) and the

orthogonality (2,4):

2 ©
Xy (== D X, T exp (— ;b
r=1n=1

! —by A
3 barhe) =ty — Qut; e+ (3+9)

1 .
Gt = T;;‘ {(“ 1)yt S[g” W) Ua (b0 y) — 835 (W) Us (by;, v)] dy +
0

2 — 1) (F1345% + Fs) Us (byq 1)}
1

1 .
bt = {1 V1645 @) U105 9) — 000 U 1y w100 +
0

2 (]' —_ 1) (Foak22 + Fz):angz (akz’ 1)}
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Here j=12: k=12 ..., [=1, inproblem a), and (=2 in problem b),

The solution constructed for particular values of the given functions and geometric
parameters will also become the solution of certain important contact problems for
an elastic strip, If g,j(y)=0 and F, = 0, then conditions (3, 1) define the prob-
lem of a periodic system, with period 2 (A; — Ay) of beams of length 2A;, coupled
toastrip 0<Ty<C1. Applied to each beam are a) symmetric or b) skew-sym-
metric forces, the sum of the solutions of problems a) and b) corresponds to an arbitr-
ary load, In contrast to periodic statics problems where the longitudinal strains of
the strip can be controlled atinfinity,say, here all the dynamic parameters are single-
valued at infinity: the waves are not propagated through the rectangle endfaces, and
the energy flux at the endfaces equal zero, The constraints imposed on the Saint-
Venant principle in dynamics are hence seen, For instance, for sufficiently large o,
the solution of the periodic problem does not approach the solution of the problem of
the vibration of an arbitrarily large but finite number of periodically arranged ident-
ical beams on a strip subjected on an identical load for any =, after the occurrence
of propagating waves,

Ifweset A4, =0,4 =—o inthesolution of (3.2), (2.1), (3.3) for
gsi (1) =0, Fyy = 0, then it is converted into the Green's function of the problem
of stationary vibrations of a beam of length 21, onastiip 0< y<{1. Setting
Ape = 0, Ay = oc, we obtain the solution of the problem of the vibration of two semi-
infinite beams between whose ends the distance is 23;. The conditions at infinity in
these problems correspond to the Mandel'shtam principle, Under other radiation con-
ditions, the uniqueness and ambiguity of the solutions is determined by the selection
of the contour L, asin Sect, 1,
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