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Dynamic problems of elasticity theory are considered for a strip, a half-strip, 

and a rectangle partially reinforced by constant-stiffness beams, Questions 
of wave pro~gati~* energy transfer, stress conc~tra~on under the beam 
ends are studied. The possibility of extending the solutions obtained to other 
classes of mixed problems is discussed. 

The solution of the inhomogeneous problem of stationary vibrations of a 
semi-infinite beam on a strip, and the system of piecewise-homogeneous solu- 

tions of this problem are constructed in quadrature& Analogous problems for 
a half-strip and rectangle, particularly periodic problems and the problem of 
the dynamics of one finite beam on a strip, are reduced to normal Poincare- 
Koch systems whose matrix elements decrease exponentially in the numbers 
of rows and columns, by the use of new generalized orthogonality relationships 

with a load. 
The method of piecew~se-homogeneous solutions was used earlier only in 

elastostatic problems [l- 93, the problems under consideration were also not 
solved by other methods. 

Z. Let a semi-infinite beam X > 0, y = i with constant stiffness D and 
linear mass p lie on an elastic strip -oo<x<oo, o\<y<1. There 
is no friction between the beam and the strip, and the foundation of the strip is in a 

sliding frame. Stationary normal loads on the free part of the strip and beam, as well 

as the moment and transverse force at the point z = 0, y = 1 act in phase, and 

equal to fr (x) cos wt, fs (X) cos ot, Pa cos ot, Ps cos wt, respectively, where 
t is the time, and cc is the frequency of the forced vibrations. The loads fr (X), 

fa (X) are local or decrease exponentially as 1 z 1 -+ do, at t=O the 
moment P, is clockwise, and the force P, is along the 9 axis. The conditions 
at infinity correspond to the Mandelshtam principle: the energy flux averaged with 
respect to the strip section and the period T = &ro-1 for each wave being propag- 

ated is directed towards & 00 as X + f a3 [lo]. The local strain energy of 

the strip is constrained in the n~g~orhood of the point X = 0, Y = 1 - 
We seek the solution of the boundary value problem for the strip UC= Re [U (5, 

y) eio*] in the Papkovich - Neuber form [ll] 

24% = 4 (1 - v)dr - grad F, @D zz (@i, a,), @i G 0 (1.1) 
F = G'+, + x a, + #I& A@, + k,W', = (k,a -kzB)y @)a 
AC& + kg2@,, = 0, k,” = k22 (1 - 2~) (2 - 2$-l, k,a = 

p02G--1 
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where p is the density of the strip material, Y and G are its elastic constants, Let 
ur and us be projections of the vector u on the z ,and 3 axes, and Us, ug, ur, 

the stress tensor components xxr,, crz, cry , respectively. 
Let us write down the boundary conditions for the complex amplitudes of the dis- 

placements and stresses 

u2 (2, 0) = ug (5, 0) = uz (5, 1) = 0 (1.2) 

Ub (5, 1) = fl (5) (EC O), q (5) = Daou2 / f%? - au2 + (1.3) 

ug = f (5) (5 > 0, Y = 1) 
& (0) = P, (m = 2, 3), $)m (z) = Da%, / azm, y = 1 (1.4) 
(D = E&s 112 (1 - voyl-1, a = phf) 

Here Ee and vs are elastic constants, and h is the beam thickness. 
Applying a bilateral Laplace transform to equations (1. l), we obtain from the con- 

ditions (1.2) 

u*+, Y)=&- s C(p)U,(p, y)ewdp, s=i, 2,...,5 (1.51 
L 

2cUl (P, y) = pq2 W sin q2 cos w - 4142 sin ql cos q2Y) 

2GU2 (p, y) = qlq2 (q2 sin q2 sin qly - pa sin q1 sin q$) 

q 2 = p2 + V2ks2, qme = pa + kma, m = 1, 2 

SubSti~~g (1.5) into (1.3), we obtain two equations 

o+ (p) + o- (p) = c (PW, (PI, rl+ (P) + rl- @) = c (P)N, (PI, (l-6) 

PEL 

c+(p) = _t’fub(t8, 1)e-R% 
8 

q*(p) = .$,(s)e+dx 

iV1 (p) = U, (p7 1) = 44q2 sin q2 0x3 ql - p04d2a sin q1 cos 42 

N,(p) = N, (p) + (DP* - 4U2 h 11, ‘=u2 @t 1) = 

k22qlq2 sin a sin q2 

Here fl,@) (r=1,2) are even entire functions having a countable set of 

zeroes izkr. After expanding the integrals (1.5) in a residue series (at the complex 

poles p = Ukr each residue is a wave damped along z, the homogeneous solution), 

the pure imaginary poles whose number s, is finite and dependent on 0, deter- 

mine the waves being propagated, As the frequency w increases, the majority of 

these zeroes arrive at the imaginary axis through the origin from the complex plane. 
The cases aAr = 0 can hoid only for critical values of the frequencies 0 which 
agree with the natural vibrations frequencies of the strip crass-section, Hence, the 

number of imaginary zeroes s, (w) for a given frequency o is determined by the 
number of critical frequencies not exceeding o , i. e., 

where [a] is the integer part of the number a, and cl and cz are the 
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propagation velocities of the tension and distortion waves referred to the dimensional 
width of the strip. In principle, this relationship can be spoiled in individual frequ- 
ency bands because of the zeroes arriving at the imaginary axis not through the origin. 
However, such cases are the exception [l2] and change the quantity S, insignificant- 
ly. For certain values of o the functions N, (p) have multiple zeroes, and these 

cases are not examined here. We shall number the pure imaginary zeroes akr ,which 
differ in aboslute value, from one to S, > 0, while the numbering of the complex 
(and real) zeroes nkr in the half-plane Re p>O starts with S, + 1; the zeroes 
Symmetric to those mentioned with respect to the origin will be denoted by a_kr, 

a-krt = -akr. Relying on the t?.ouch& theorem and following 1131, it can be prov- 

ed that all 1 akr 1 > w greater then zero in absolute value are complex. For 
Ro p > 0, Im. p > 0 , they are defined by the asymptotic formulas 

akr = (‘/sk’ - &)n - Y,n i_ Vzi In kn + i0 (I) 

ekz = (l&k - ,?,)n + iQ (1) 
(1.7) 

where 1, > 0 are integers dependent on o, k to even. The larger zeroes akr 

have odd numbers in the quadrant Re p > 0, Im p ( 0 . 
We select the contour L and the pure imaginary zeroes with positive indices k 

SO that the Mandel’shtam principle would be satisfied and the numbering of the zeroes 

in the last expressions would be natural, from one to S,. Let p = iv be a point 

of the imag~ary axis, ckr = dw / dy for iy = akr the group velocity of the kr - 
th wave being propagated from the left (r = 1) or the right (r = 2) to infinity, 

Qkr the energy density of this wave averaged over the period T , Pkr its flux 
averaged over T and over the section x = const. Let us use the Reynolds - 

Rayleigh formula Pkr = Ck,.Qkr (see [M]. p. 239; M. A. Leontovich [l5] and 
Lighthill [16] obtained the most general proof of the validity of this formula). Since 

N, (-p) = N,,(p), then kkr = --ckr, and SinCe Qkr > 0, the fluxPA, < 0 
corresponds to one out of every two eigenvalues with modulus equal to 1 akr 1; we 

denote this number (and point) by aft,, k > 1. Let the contour L agree with the 

imaginary axis, by bypassing the point akr from the left, and the point a-kr from 
the right, k > 1. Then after expanding the integrals (1.5) in residue series at the 

poles P = akr, we have in accordance with the Mandel’shtam principle Pkl < 0 

for k = 1, 2, . . ., S, and Pks > 0 for -k = 1, 2, . . . , &. 
JUmination of the function C @) from (1.6) results in a Wiener - Hopf equation 

q- (p) + q+ Ip) = K (&I@- (p) + G+ (pfl; p cz L, K (P) = (1,8) 
HI-’ (PIN, Cp) 

Let us construct the canonical solution of the homogeneous equation rl0- (p) = 
K @)a,+ @), p E L. Let us apply the usualmethod[17,8]of extracting the 

tiemann problem TJ~- (p) = I& (p)t~~+ (p) with zero subscript on the imaginary 
axis from (1.8) by using trigonometric functions. Let us set 

00” (p) = a1’(p)os’ (P). ,*K (P) = KI (P) Ks (P) 

&(p) = $- pgctg3np ff: Ctg fi (P - eke) ctg Jt (P + akd x 
k-l 

(La 
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r ii ctg Jc (P - Uk2) m x (p + a,,,]-l 
L k=l 

and let us use the formula 

2 ctg zcz = r (1 - 

Factoring the function Ki (p) 

J 

z)r (1 + z)l-l (l/z - zp-’ x (l/2 + 2). 

by elementary means in conformity with the 
Mandel shtam principle, we obtain 

r* (‘/a -t P) ‘a c+ (PI = 1‘3 (1 + p) II 
(P + “kl) r (‘/I + P - akl) r (‘/S + P + +fl) 

r ti + P - akl) r (I + P + ‘kl) 
x (1.10) 

k=l 

kl (P- 

r (I i- P - ak&r (I + P + a& 

t ‘kg) r (‘h + P - ‘h2) r (‘h + P + %) 

According to (1.6) and (1.9), the function Ks @) satisfies the Holder condition 
on the imaginary axis, Ks (ir) = 1 + 460-l 1 y 1 -’ -I- 0 (eyA), for 1 y 1 + 00, 

We therefore have [18] 

ioo 
In K4 (t) dt 

t-P 
(1.11) 

The general solution of the inhomogeneous equation (1.8) is constructed taking 
into account the requirement of finiteness of the loca1 energy under the beam edges, 

which is equivalent to the condition us (z, 1) - AH’, cp > -4, 5 -+ +O, or 
W% P. 48) o+ (P) - _4 r (cp + 1) p-Q-l for p + 00 . Since us+ (p) = 
0 (1) and oi+ (p) = 0 (p-‘/p) for p + oo according to (1.10) and (1. ll), 

then cp = - i/s , and therefore [18] 

o’(p) = * s [-$$$ - 11+ 0) 
K (s) co+ (t) 1 

dt+ 
(s - P) 

(1.12) 

L 

co+(P) n (P), JWP)=AP+B 

where A and B are constants. However, (1.12) is hardly effective precisely be- 
cause of the difficulties in calculating A, B for o + 0 , and will not be used 

here. 
Let us construct the solution in another form [2] which is well adapted for computa- 

tions on the vibrational load of the foundation (strip) and the support beam slabs of a 
skeleton structure having a point contact with the slabs [ZO]. If f, (5) = frear (1. = 
1, a), then we obtain by an elementary method, the Liouville theorem [I91 

o+ (p) + o- (p) = uo+ (p){f1 [us+ (a)@ - p)l-’ + fs [qo- (a)@ - (1.13) 

o)l-l + l-I (P)) 

Let fi (5) z 0, fz (5) = QzS (L - c) 
6 (2) 

in the problem*(l. 2% (1.3), where 
is the Dirac delta function. We seek its solution Y 9 i. e., the Green’s 

function, in the form of the sum of solutions of the fundamental problem, as in [Z]: 
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(JJt 0) = u, (5 0) = %I (G q = - c) (1.14) 

evidently being expressed by the formulas (1.5). where 

c (p) = Qae-pcNa-r (p) (1.15) 

and the solutions of the mixed (correcting) problem (1.2), (l. 3), where 

fr (5) = &!I Q2ea*+c) Nl (%a) t N%’ (%)I% f2 @f = 0 (1.16) 

The form of the function fr (3) permits using (1.13) in the solution of the prob- 
lem (1.2), (1.3). (1.16). Consequently, taking account of (1.5) and (1.15) we obtain 

e-p 1 
rQ(z,y) -US{-_+- (1.17) 

L As(P) El (P) 
n=l 

t+, P) = 
e-Y!& (r) Nl (P) 

(a - p) I?%’ (I) ’ El (p) = so+ (P) 

The Green’s function of the problem of an overload is calculated analogously when 

f~ (2) = Qd (5 -c), c< 0, fz (2) f 0, P2 = P, = 0 in(l.2)-(1.4). 

The stress intensity factor under the beam edges is found by means of known asym- 
ptotic estimates [lo) and has the form 

zQ (3, 1) = A (nz~$)-~Iz + 0 (Jfi$, z + +0 

We write the expansion of the integrals (1.17) in a residue series to satisfy condi- 
tions (1.4) and the conditions at the endfaces of a rectangle 

A, < x < L 0 < Y Q 1, 1, c 0, hz > c * 

or a half-strip h, = --00 and & = 00 (see Sect.3). Closing L on the 
right (j = 1) and the left (j = 2) by semicircles of radius Rk = x 1 k [ , 
and taking account of the equality El (p) = E2 @) z N2 (p)Iqo- (p)l-l, p E L, 
we obtain 

us’fhj, y)=: (--1)‘Qp$ tj(-bb,j)U,(-bb,j+ ?;)e4kj’j, b,j = (--l)‘~.~i~‘~~~) 
k=l 

(Ej* (p) = res IEj (p)l-‘) 

bet us evaluate the quantities I#~ (0), $a (0) by term-by-term differentiation 

of the series (1.18) for j = s = 2, y = 1, & < c . 
Using the identity 

DUz (ak2, 1) = N1 (a&dkz-l, dk2 = aD-’ - akz* (1.19) 

we obtain a system of two equations in the complex unknowns A and B from con- 

dition(1.4). (m = 2, 3) 
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m 

z N, (akz) akarn 
k=_~ Nz’ @k2) %a t(a,,, Uk2) -j- Aakn+ L? - I (1.20) 

n=l 

Because of the estimates (1.Q the k -th terms of these series decrease not slow- 
er than 1 k l-‘/z for m = 2 and 1 k l”/z for m = 3, and according to (1.17), 
the inner series converge exponentially in n. 

Let us examine questions referring to the uniqueness of solutions in the form 

(1.12) or (1.17). In investigating the uniqueness, i. e, , in computing the degree of 
the polynomial II (p), the representation (1. lo), (1.11) imposed no constraints on 
either the residues of the function [K (P)]+l at the poles p = akr, k < s,, or on 

the mutual location of the points akl and akz on the imaginary axis. Each kr-th 

factor in the product (1.10) tends to one for 1 Imp 1 ---t 00, Rep > 0 . Hence, if any 
set of points (Q, anz) ({a_kl, a-,,)) is bypassed on the right (left) say, for k q sl, 

n < S, , despite the Mandel’shtam principle, and the rest of the poles and zeroes on 
the imaginary axis on the left (right) afterwards, then the conditions of the general- 
ized Liouville theorem governing the uniqueness and nontiweness do not change, 
as before o+i(p) - p-“’ as p 4 00. In particular, it hence follows that the Som- 

merfield principle also generates a unique solution in the form (1.12), (1.17), and if 
there are backward waves among those being propagated (bringing energy from in- 
finity), then the magnitudes of the corresponding sources are not arbitrary at infinity 
but are determined in a unique manner by the functions jr (z) and the quantities P,. 

It is meanwhile necessary to note that the contour L does not certainly define 
the unique solution as holds in elastcstatic boundary value problems. By replacement 
of the contour integrals by residue series at the poles arl, ak.& the representation( 1. lo), 

(1.11) permits easily to establish for what selection of the contour L a nonunique 
solution can be obtained, how many arbitrary constants are and what the corresponding 

pattern of the wave process. For example, if the countour & selected according to 
the Mandel’shtam principle is displaced so that it would bypass any symmetric points 

p = aka and p = --akz h- = 1, 2, . . ., s, s < s,, on the right, and its previous 

location is retained at the rest, then S factors p - akl are added in the denomina- 

tor of (1.10) (the set of gamma functions in (1.10) is not associated with the bypassing 

of the zeroes and poles on the imaginary axis, hence it is always single-valued). It 

hence follows that a,+(p) - p-sjZ-s as p ---* CO ,and this means that according to the 

generalized Liouville theorem S + 2 arbitrary constants will enter into the solution 
They can be determined by giving the amplitudes of S standing waves of the form 

%(!/) cos (1 aks 12) x 02s Wt, which occur, according to (1.12) for 5 - 00 after the 

mentioned shifting of the contour. Such an analysis is easily performed for an arbitr- 
ary bypassing of the points akr on the imaginary axis. 

2. Let us construct a system of piecewise-homogeneous solutions (PI-IS) of the 
dynamic problem (1.2) - (1.4). The general form of its kr+h elements u&3’ (z, 
y), combined in two different subsystems (r = 1, 2), will be the same as in 

statics. Following [2], we obtain 
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S[ E3-r @kr) 

L (- i)r@- $& + nkr x (2.1) I 
u, (P, Y) dP 

E, (~1 e’-pr 
k = 1, 2, . . .; flkr = Akrp 4 B,wv 

where Akr, Bkr, Chr are arbitrary complex numbers. Analogously to the expans- 
ion (1. 19), we have (6pj is the Kronecker delta) 

& (hj, y) = Ck,. 1&j& (hkrr y) ebkrh - (- I)’ ii1 x (2.2) 

Tf;jnU, (- b,j, y) ebnjkj ] 

T ri 
kn = [(--1)‘(b,, + bJ’L @d + A kzh - 

BkrlE*j(-bnj) 

The constants A kr, BkF are calculated from the conditions 8” urJ (5, y) / 
a$== 0, s=o,g=1, which yield a system of two equations for each 

A krc Bkr 

(r - 2) DUr (%, 1) a% + -g T~;d&z~N~(a,z) = 0 (2.3) 

(m = 2, 3; T = 1,2; k :=;;2, . . .) 

after term-by-term differentiation of the series (2.2) for s = j = 2 and passage to 
thelimitas z=O. 

The series converge in n, as do the external series (1.20). 
The stresses generated by the kr - th PHS under the beam edges have the form 

r&a’ (2, 1) = A k, (ZZ)-“8 + 0 (1/i& 5 -+ +o 

Following [IO], it can be shown that the functions u, (akr, y) the homogeneous 
sohrtions into which the elements of the PHS system are expanded in (2.2) for 3 = 
const , will satisfy the general orthogonality relationship with the load 

1 

s [Ul’+kr, Y) u4 (%r, ?.!I - US (akr, 3) UZ (aniv !/)I @ + (2.4) 
0 

This relationship also holds upon replacing ukr by b,,; it has been obtained 

in [lo] for .r = 1 . 
Diverse contact problems about the forced stationary vibrations of an arbitrary 

number of finite beams coupled to an elastic strip, half-strip, and rectangle, can be 
solved by using the PHS system (2.1). As analytic estimates and the results of comput- 
ing the static strains of beams and stringers in combination with an elastic base [2- 9, 
20j1 the solution hence turns out to be effective even in those cases when the strips 
or rectangles are comprised of homogeneous reinforced rectangles and half-strips with 
different elastic characteristics, i. e., when the base has a vertically laminar structure 
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and the stiffness of the reinforcing elements are piecewise-continuous. To solve vis- 
coelasticity problems it is sufficient to set S, = 0 in (1. 10) and to replace the real 
moduli of G and E, by complex moduli. 

The PHS method is easily transferred to problems of plate bending vibrations, to 

mixed problems of stationary vibrations of cylindrical bodies [l, 3,4,7], to kindred 
problems of acoustic and electromagnetic wave diffraction. This method is not ap- 
plicable to dynamic boundary value problems for wedgeshaped and conical domains. 

Setting D = 00, and using (2.1) there is possible reduce to normal systems of 
Poincarg - Koch, the problems of the vibrations of stamps, as well as their dual prob- 
lems of arbitrary slits inahalf-strip and rectangle, particularly, periodic and doubly- 
periodic problems on the stationary vibrations of an inhomogeneous strip, half-strip, 
and place weakened by longitudinal and transverse slits. 

3. Let us turn to examples. Consider two problems a) and b) for the rectangle 

A,,( X<&2,O\(Y\(l. Let there be “cross” conditions on its endfaces 

uS thj, Y) = gsj (Y), %n (&A = Fm, ; = 1, 2 (3.1) 

in which a) s = 1.3, m = 1.3: b) s = 2.4, tn = 0.2. The conditions (1. 2) - (1.4) 
are conserved on the longitudinal sise, where fI(s) E 0, fs(x) = Q,S (z - c); all 
the loads are cophasal. 

We seek the solution of both problems in series of PHS 

(3.2) 

satisfying conditions (1.2) - (1.4) at once. To satisfy conditions (3.1). we substitute 
the series (3.2) in their left sides and then the expansions (1.18) and (2.2). We change 
the order of summation with respect to k and n in the double series being formed. 

We multiply both sides of conditions (3.1) successively a) by U4 (b,jl Y), -U&&j, 

Y), 2b,s2Ua (&z, 11, 2U,(b,z, I), and b) by c’, (b,j, Y), --A&j, Y), 2&zuz (&zt I)* 

2b,,‘Uz (b,,s, 1). We add the four equalities manipulated in such a way and we in- 

tegrate with respect to Y between zero and one. 

C,t? bk+ 

Introducing the new Unknown X& = 
we obtain a normal Poincar6 - Koch system from the total equation [23] 

because of the evenness of the relationship Us(-bgr, y) = (--l)sU, (bkr, y) and the 

orthogonality (2.4): 

Xkj (- i,j+i-jlnjlX,J’;~ exp (- bkihj -b&,) = tkj! - Qztj (bkj) ,-bki’.i t3a3) 

tkjl=+-{(-ly”~ [glj (Y) UP (bkjt Y) -g_qj (Y) u2 cb&jt Y)I dY + 
0 

2 (i - 1) (I‘,‘k,’ + F3) ua @k2r 
i)) 

[gdj (Y) UI (bkj, Y) - gtj (Y) u3 (bbjs Y)I ‘Y f 

2 (i - 1) (Foak22 + Fdak2ua @k2? i, I 
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Here j = 1,2: k = 1,2, . . ,; 1 = 1, in problem a), and 1 = 2 in problem b), 
The solution constructed for particular values of the given functions and geometric 

parameters will also become the solution of certain important contact problems for 
an elastic strip, If g&J ssz 0 and F,,, = 0, then conditions (3.1) define the prob- 
lem of a periodic system, with period 2 (& - hi) of beams of length 2&,, coupled 
to a strip 0<$/\<1. Applied to each beam are a) symmetric or b) skew-sym- 
metric forces, the sum of the solutions of problems a) and b) corresponds to an arbitr- 

ary load. In contrast to periodic statics problems where the longitudinal strains of 
the strip can be controlled at infinity, say, here all the dynamic parameters are single- 
valued at infinity: the waves are not propagated through the rectangle endfaces, and 
the energy flux at the endfaces equal zero. The constraints imposed on the Saint- 
Venant principle in dynamics are hence seen. For instance, for sufficiently large w, 

the solution of the periodic problem does not approach the solution of the problem of 
the vibration of an arbitrarily large but finite number of periodica~y arranged ident- 

ical beams on a strip subjected on an identical load for any 5, after the occurrence 
of propagating waves. 

If we set Akl = 0, &, = --oo in the solution of (3. Z), (2. l), (3.3) for 

gsj (Y) G 0, F, = 0 t then it is converted into the Green’s function of the problem 

of stationary vibrations of a beam of length 2ha on a strip o\< Y<f. Setting 
A k$j = 0, 1, = c=, we obtain the solution of the problem of the vibration of two semi- 

infinite beams between whose ends the distance is 2hI. The conditions at infinity in 

these problems correspond to the Mandel’shtam principle. Under other radiation con- 
ditions, the uniqueness and ambiguity of the solutions is determined by the selection 

of the contour L , as in Sect. 1. 
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